AH23848 accelerates inducible nitric oxide synthase degradation through attenuation of cAMP signaling in glomerular mesangial cells.
نویسندگان
چکیده
Excessive release of nitric oxide (NO) by mesangial cells contributes to the pathogenesis of glomerulonephritis. Prostaglandin E(2) (PGE(2)) produced at inflammatory sites regulates the release of NO through its downstream signaling. In glomerular mesangial cells (MES-13 cells), PGE(2) modulated NO production mainly through EP4 receptor in a cAMP-dependent manner. Lipopolysaccharide and interferon-gamma (LPS+IFNgamma)-induced NO production, inducible nitric oxide synthase (iNOS) gene and protein expression were greatly inhibited by AH23848, an EP4 antagonist. Further investigation indicated that AH23848 attenuated endogenous cAMP accumulation in MES-13 cells and modulated NO production through declination of iNOS gene expression and acceleration of iNOS protein degradation. AH23848 downregulated the iNOS protein in MES-13 cells through protein kinase A (PKA) since KT5720, a PKA-specific inhibitor, reduced iNOS protein stability. A short exposure of activated MES-13 cells to okadaic acid augmented iNOS activity. AH23848 and KT5720 attenuated serine/threonine phosphorylation of iNOS protein in LPS + IFNgamma-stimulated MES-13 cells. The results of this study led us to speculate that cAMP might regulate iNOS-stimulated NO synthesis through posttranslational mechanisms. Attenuation of cAMP signaling and the phosphorylation status of the iNOS protein may account for the effect of AH23848 in accelerating iNOS protein degradation in MES-13 cells.
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملBiglycan, a nitric oxide-regulated gene, affects adhesion, growth, and survival of mesangial cells.
During glomerular inflammation mesangial cells are the major source and target of nitric oxide that pro-foundly influences proliferation, adhesion, and death of mesangial cells. The effect of nitric oxide on the mRNA expression pattern of cultured rat mesangial cells was therefore investigated by RNA-arbitrarily-primed polymerase chain reaction. Employing this approach, biglycan expression turn...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملPlatelet-derived growth factor and fibroblast growth factor differentially regulate interleukin 1beta- and cAMP-induced nitric oxide synthase expression in rat renal mesangial cells.
Platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) regulate mesangial cell proliferation and matrix production in vitro and in vivo and crucially participate in the pathogenesis of glomerulonephritis. We investigated whether PDGF-BB and bFGF influence nitric oxide (NO) production, another important effector molecule in inflammatory glomerular injury. Inducible NO sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nitric oxide : biology and chemistry
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2008